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Claire’s Bio on the website

Before becoming a scientist, Claire trained race horses in Ireland, trapped possums in New Zealand
and herded sheep on the German moors. In Geneva where she later went to become an
interpretor, she met Maghi King who finally sent her to the UK to study for a Master in Intelligence
Knowledge Based Systems at Essex University. She did her Master research under Ann de Roeck’s
supervision and moved on to Edinburgh to do her PhD. There, she was hired by Gabriel Bès (U. de
Clermont Ferrand, France) to work on the EU funded ACORD project on parsing and generating with
Unification Categorial Grammar. In her thesis on the other hand she investigated the syntactic,
semantic and computational properties of verbal ellipsis and was supervised by Ewan Klein and
Robin Cooper.

After leaving Edinburgh, she worked in Amsterdam and Utrecht on EU funded projects and in

Saarbrücken on German funded ones (LISA, InDiGen). Finally, in 2000, Jean-Marie Pierrel suggested

her to apply for a CNRS position and since then she have been in Nancy working at LORIA. Along

the way, she gave birth to three daughters: Jennifer, Gabrielle and Caroline. She taught Iyengar

yoga at LORIA for 10 years. For this, she thank Clé Souren, her teacher in Amsterdam.
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Chat GPT in action: programming, world knowledge

Please write a short bio for Claire Gardent and then write a program that will match her name in
this text with a regular expression

Claire Gardent is a computer scientist and researcher who specializes in natural language
processing (NLP) and computational linguistics. She is a research director at CNRS (the French
National Center for Scientific Research) and a professor of computer science at Lorraine University
in France. Her research focuses on developing computational models for natural language
generation, semantic parsing, and discourse analysis.

Here is a Python program that matches the string ”Claire Gardent” in the text above using a regular
expression:

import re

text = "Claire Gardent is a computer scientist and researcher [...]"

match = re.search(r"Claire Gardent", text)

if match:
print("Match found!")

else:
print("Match not found.")
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Linguistic knowledge
Give me the rule of the agreement of the past participle with the direct object in French

In French, the past participle of a verb agrees in gender and number with the direct object of the
verb if the direct object comes before the verb in the sentence. This is known as ”accord du
participe passé avec le complément d’objet direct (COD)” or ”concordance du participe passé avec
le COD.”

Here are the rules for the agreement of the past participle with the direct object in French:

1. If the direct object is feminine singular, the past participle agrees with it in gender and adds
an ”e” at the end of the participle. Example: J’ai mangé la pomme rouge. (I ate the red
apple.) - ”pomme” is feminine singular, so ”rouge” and ”mangé” agree with it and end in ”e”.

2. If the direct object is masculine plural or feminine plural, the past participle agrees with it in
gender and adds an ”s” at the end of the participle. Example: Nous avons mangé les
pommes rouges. (We ate the red apples.) - ”pommes” is feminine plural, so ”rouges” and
”mangé” agree with it and end in ”s”.

3. If the direct object is masculine singular, the past participle does not change. Example: J’ai
mangé le pain. (I ate the bread.) - ”pain” is masculine singular, so ”mangé” does not change.

4. If the direct object is a pronoun, the past participle agrees in gender and number with the
pronoun. Example: Je l’ai mangée. (I ate it.) - ”la” is feminine singular, so ”mangée” agrees
with it and ends in ”e”.

It’s important to note that the agreement of the past participle with the direct object only applies

when the direct object comes before the verb. If the direct object comes after the verb or is not

present, there is no agreement. 3
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How did we get there ?



1956 The birth of AI

1956: Dartmouth summer school (John Mc Carthy, Marvin Minsky,
Allan Newell, Claude Shannon, Herbert Simon…)

1956: Three models for the description of language (Chomsky)

Symbolic AI
That’s the golden age of symbolic
AI that begins. In NLP, beyond
Chomsky’s work on formalizing
language structure, works from R.
Montague allow to build bridges
with the semantics of formal
languages

NP:
λP∀x. man(x) → P(x)

every man

NP:
λQ∃y. woman(y) ∧ Q(y)

a woman

V:
λyλx. love(y)(x)

loves

VP:
λx∃y. woman(y) ∧ love(y)(x)

S:
∀x. man(x) → (∃y. woman(y) ∧ love(y)(x))

Figure 108.1: A Montague-style derivation of a semantic representation for
the sentence “Every man loves a woman.”

2.1. Semantic construction

Compositional semantics. In the early 1970s, Richard Montague pre-
sented a framework for a strictly compositional interpretation of natural-
language sentences in terms of type theory, including a formal treatment
of quantifier scope (Montague 1973). His work not only provided the basis
for modern semantic theory, but has also had great influence on the de-
velopment of computational semantics. “Standard model” computational
semantics takes it as given that we can assign lambda terms to lexicon en-
tries, combine them by traversing the parse tree bottom-up, and compute
lambda terms for larger phrases compositionally out of those for smaller
phrases, using functional application and beta reduction. An abbreviated
example for the derivation of one reading of the sentence “every man loves
a woman” is shown in Fig. 108.1.

Montague’s original framework was based on an idiosyncratic version of
categorial grammar. Computational linguists mostly used the formalism of
unification grammar, i.e., phrase-structure grammar extended with feature
unification, when they first started developing large-scale grammars in the
1980s. Unification grammars such as LFG (Dalrymple et al. 1995) and
HPSG (Pollard & Sag 1994) o↵ered an elegant and simple way to compute
predicate-argument structures by filling the argument positions of a head
with the semantic contributions of its complements using unification (see e.g.
Pereira & Shieber 1987). These methods were later extended to cover more
complex problems in semantic construction (Dalrymple 1999; Copestake,

4
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A key milestone…

HUMAN: Pick up a big red block.
SHRDLU: OK.
HUMAN: Grasp the pyramid.
SHRDLU: I don't understand which pyramid you mean
HUMAN: Find a block which is taller than the one you are holding

and put it into the box.
SHRDLU: by "it", i assume you mean the block which is taller than the one

I am holding.
SHRDLU: ok.
HUMAN: What does the box contain?
SHRDLU: The blue pyramid and the blue block.

(SHRDLU, Winograd 1972)
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When we met Claire !

Langue  
et 

Dialogue
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The problem

• SHRDLU is one of the first chatbots operating on a closed world.
With few ambiguities and such a small world, it is possible to
formalize a language to talk with the bot and the physics and
implicits of the world.

The problem
SHRDLU does not generalize

• Modeling language in an open world requires modeling a larger
grammar but also world knowledge, common sense, wider
discourse context…and it becomes pretty hard to model with
symbolic rules only.
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Statistical models

• From the linguist point of view, there is the key hypothesis that
language has structure. For instance:

A hearing is scheduled on the issue today

root

det subj

nmod

vg

adv

pc

det

• From the beginning of the 1990, to address ambiguity problems,
and with the augmentation of storage and computing power, the
first machine learning models for natural language processing
start to emerge.

The problem
Generally speaking, annotated data for learning structured models
of language is very costly/time consuming to get. Annoted corpora
are generally small and not representative (natural language is far
from being iid) 9



Summary

Two main problems in modeling language:

1. Modeling the structure of language
2. Modeling the rest : world knowledge, context, common sense …
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Language models, Sesame street
and GPT



Markovian language models

• Markovian language models do not need costly annotations and
can be trained on very large amounts of raw text:

P(w) ≈
n∏
i=1

P(wi|wi−k . . .wi−1)

• Historically, these models were related to some emblematic
tasks such as machine translation and automatic speech
recognition

• Probability estimation from corpora, by counting, becomes a
tricky art as soon as the order of the model (size k of the
context) increases.
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Neural language models (word embeddings)

The breakthrough takes place in two times:

• Distributional hypothesis: words appearing in similar contexts
have similar meanings

• (Mikolov 2013, static word embeddings) Learn a mapping from
words to dense vectors in such a way that words occuring in
similar contexts have similar embeddings

• Word embeddings = static dictionary (strings→ vectors)
• What about lexical ambiguities in context ?

ex. avocat:fr (lawyer,advocado) ? est:fr (east, is) ?
12



Recurrent neural language models

(2011, Mikolov et al.)

• Markovian hypotheses are relaxed:

P(w) ≈
n∏
i=1

P(wi|w1 . . .wi−1)

• The conditional probabilities are now dependant of
contextualised embeddings

Ce modèle prédit le successeur

modèle prédit le successeur [fin]
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The story so far…

Historically, the estimation of conditionals P(wi|context) is made by
counting n-grams:

• Example :

P(cat|the,black) = #(the,black, cat)
#(the,black)

Zipf and Context Sharing
• n-grams are Zipf distributed⇒ most n-grams occur only once
(or zero) even in very large corpora.

• Probability estimation naturally suffers from a sparseness
problem

• Using embeddings for representing contexts allows to share
information between similar contexts : the black, cat ; the white
cat; the gray cat …

14



Current state of the art

Ernie, Elmo and Bert, characters
from Sesame Street OpenAI (GPT-3, chatGPT, GPT-4)

Properties
• Contextualized language models
• Trained on very large data sets
• Designed to be efficiently run on GPU (parallelism)
• First outstanding success of unsupervised (self-supervised)
methods in natural language processing

• not a single bit of linguistics in the design
15



Two games for learning a language model

• Fill in the gap (BERT) :
The latest breakthrough in intelligence

• Guess the next word (Elmo, GPT-3,GPT-4):
The latest breakthrough in artificial

Optimisation objective
This child’s ”game” is framed as an optimisation problem that aims
to maximise the probability of the word to guess given the context

16



Attention inside !

• Masked language models (BERT)

• Autoregressive models (GPT)

Attention in a nutshell
Contextualised embeddings are a weighted sum of the sentence
embeddings. The weights between positions i and j are a function
of the similarity between input vectors xi and xj

17



Learning representations

• The main interest in current language models is to take
advantage of their representations for words, sentences,
text…rather than actually paying much attention to their
capacity of predicting the missing word.

• A language model is naturally used as a function mapping strings
to contextualized vectors

• By contrast with static embeddings, the contextualisation
performs some sort of word sense disambiguation.

• Training them on huge amounts of data is likely to help them to
model context and acquire correlates of world knowledge and
common sense without having to create explicit symbolic data
bases.

• But this likely remains a somewhat approximate and incomplete
knowledge

18



Language models and downstream tasks

• Large language models are mostly used to map linguistic strings
to vectors.

• They are used in downstream applications, for instance in
question answering (SQUAD):

Apollo ran from 1961 to 1972, and was supported by the two-man Gemini program which
ran concurrently with it from 1962 to 1966. Gemini missions developed some of the
space travel techniques that were necessary for the success of the Apollo missions.
Apollo used Saturn family rockets as launch vehicles. Apollo/Saturn vehicles were also
used for an Apollo Applications Program, which consisted of Skylab, a space station
that supported three manned missions in 1973–74, and the Apollo–Soyuz Test Project, a
joint Earth orbit mission with the Soviet Union in 1975.
Q: What space station supported three manned missions in 1973–1974 ?
A: Skylab

• Such a system builds a representation (e.g. a vector, a list of
vectors…) for the text, a representation for the question (e.g. a
vector) that are used as input for predicting the answer.

• Most of the tasks in NLP may be framed with a similar setup
(sentiment analysis, summarization, machine translation…)
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Scaling up

• The time-dependant architecture of recurrent models (GRU,
LSTM) is impractical for scaling up

• Current language models are architecturally state-less
(GPT simulates temporal states)

• Instead they are designed to run in parallel without time
dependant states

• GPUs can be used efficiently and models can scale up

Model Training size (Gb)

BERT 16
XLNET 126
Megatron 174
T5 745
TuringNLG 174
GPT3 570
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A word on chat GPT

• Although unpublished, Chat GPT is essentially GPT-3 with
additional reinforcement learning with human feedback. This
likely to correct weaknesses of GPT-3 (Bang et al. 2023):

• Hallucinations
• Deficient at reasoning (mathematical, multi-hop) but has acquired
some commonsense reasoning

• The users of chat GPT may indicate whether the generated text
is good or bad

• Given its success and the number of users, openAI is likely to
collect an unprecedented amount of human annotations in the
history of the field.
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Fine tuning language models



The evolution of French syntax (Grobol et al. 2022)

• Modern French is an SVO language
• Old French has relatively free word order with dominance SOV,
SVO

• Latin is essentially an SOV language

Exemple
1. L’altre meitet avrat Rollant (OF : OVS)
2. Roland aura l’autre moitié (MF : SVO)

• The question : what is the evolution mechanism that explains
the evolution from Old French to Modern French ?

• The method requires to make the syntax explicit: it requires to
annotate corpora across time

L’ altre meitet avrat Rollant

root

det

mod obj sbj

Rolland aura l’ autre moitié

root

sbj

obj

mod

det
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Difficulties for annoting Old French

• Pretty costly to annotate text in syntax, and particularly for Old
French where you can hardly find native speakers

• Training a parser on Old French is hard: very limited annotated
data sets (in size)

• The language is non normalized⇒ Variation
• Genre (verse or prose)
• Geographic

1106

Figure 1: Oïl languages

Medieval French covers both Old French (9th-13th c.)
and Middle French (14th-15th c.). These stages are
linguistically close, and both precede the adoption of
spelling norms. Middle French is more regular than Old
French in some respects such as word order (Marchello-
Nizia et al. 2020) and less in others such as NP structure
and pronouns system (Marchello-Nizia 1979). Medieval
French covers a set of Oïl Romance languages spoken
in the kingdom of France between the 9th and the 15th
century (fig. 1). There are around twenty such languages.
Older texts are close to Late Latin, and verse is prevalent
until the end of the 13th century. Old French has a
relatively free word order. Until the mid-11th century,
the prevalent order is Subject-Object-Verb (SOV), which
is then gradually supplanted by SVO, which is the default
order in contemporary French. Unlike most languages
with free word order, the functions of verbal arguments
are not always given away by morphological clues, the
already simplistic case system of Old French disappears
progressively through the covered period.
There are also many cases of syntactic ambiguity. For
example, in the following quote from Lancelot,5 (verse
5436), both “la dame” and “Lancelot” could be the
subject or the object of “Vit” and only the context enables
the reader to understand that “la dame” is the subject.

Dolant
Mournful

et
and

pansif
meditative

Lancelot
Lancelot

Vit
saw

la
the

dame
lady

‘The lady saw that Lancelot was mournful and
meditative.’

5In the edition from Pierre Kunstmann, from the online
Base de français médiéval: http://catalog.bfm-corpus.
org/CharretteKu.

Word order is also relatively free within constituents. For
example, a noun modifier can be on the left or on the right
of its governor, and it is not necessarily preceded by a
preposition. In contemporary French, it can only appear
on the right, and it is found without a preposition only in
some cases like named entities. Because of the general
free word order and the absence of punctuation in our
treebank, this adds up to the ambiguity of the analysis.
In each of the following examples from the SRCMF
corpus, the noun following roi (“king”) has a different
analysis: head of roi, modifier, argument of the same
verb or a different one, with no explicit marking:

Fus tu donc pus a la roi cort
Were you then no more at the king court

nmod
det

case

“Then were you not at the king’s court anymore?”
(Beroul Tristan)

la fille au riche roi pescheor
the daughter of the rich king fisher

flat

“the daughter of the rich Fisher King” (Queste del Saint
Graal)

De Guenelun atent li reis nuveles
From Ganelon waits the king news

nsubj

obj

“The king waits for news from Ganelon.” (Chanson de
Roland)

Biax sire fet li rois escu vos envoiera Diex
Dear Sir says the king shield you send-FUT God

nsubj
obj

“Dear Sir, says the king, God will send you a shield.”
(Queste del Saint Graal)

Furthermore, overt subjects are not mandatory, and are
often dropped in texts written in verse until the 12th
century, after which the presence of subjects increases
through time. These phenomena are particularly preva-
lent in verse, where metric and rhyming constraints often
lead to more contrived syntactic forms than in prose.
Another source of ambiguity is the variety of spellings,
due to the lack of spelling standard. For example, the
word moult (transl. a lot (of), very), emblematic of this
period, is initially an adjective, and it is progressively
grammaticalized, becoming an adverb. Several forms
appear at the same time, some with a declension, some
without, and the radical does not have a fixed spelling:
molt(e)(s), molz, mult(e)(s), mul(t)z, mou(l)t…
We chose to include a few texts from the early Middle
French period (14th-15th c.) in this raw corpus, which
brings a valuable complement of the prose documents
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Method (Grobol et al. 2022)

• Large Language models for modern French do exist
(CamemBERT, FlauBERT)

• Fine-tuning them on 55Mb of Old French raw corpora gets you
BERTrade

• We can learn a very accurate parser on Old French using the
BERTrade language models

• Manual annotation/verification is substantially reduced

Base model UPOS UAS LAS

Vanilla 93.51 87.60 81.54

BERTrade-mBERT 96.95 93.33 89.60
BERTrade-CamemBERT 97.16 93.75 90.06
BERTrade-FlauBERT 96.94 93.75 90.07
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Discoveries in typology ?

• Speech language models (e.g. wav2vec) have representations
that predict phonological features:
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Fig. 3. Emergence of latent linguistic categories at the phonetic level for the
English models. Left: tSNEs of the continuous representations of the acoustic
model (last layer) pooled over phones in a test set, according to sonority (a), place
(b) and voicing (c) for the 3200h English model. Right: developmental curves from
a leave-one-phoneme-type-out classification errors as a function of input quantity
(taking all 256 dimensions into account). Chance level and MFCCs performances are
also given. The asterisks indicate a significant correlation of classification error and
input quantity. na: not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001

titatively the information encoded within the models (34, 35).297

We train a linear classifier on top of the continuous acoustic298

features to quantitatively measure to which extent previously299
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one trained with mel-frequency cepstral coe�cients (MFCCs,304

in blue). Results indicate that sonority, place of articulation,305

and voicing are encoded in the representations learned even by306

the model trained on the smallest quantity of input (50h) of307

English speech (all scores are better than the random baseline308
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when trained on the acoustic representations learned by the 313

model trained on only 50h of English speech or on MFCCs. 314

More details about these analyses can be found in Section 1, 315

and equivalent analyses on the French model can be found in 316

Supplementary Section 6. 317

From the results presented in the above section, we can con- 318

clude the discrete acoustic representations are too fine-grained 319

to correspond to phonetic categories as defined by linguists. 320

Despite that, the acoustic representations still contain dimen- 321

sions that encode critical phonetic features. More than that, 322

such an organization emerges in a gradual fashion, with a 323

positive e�ect of input quantity. 324

The emergence of lexical and grammatical categories. Next, 325
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representations learned by the language model. More specifi- 327

cally, we enquire whether there is some trace of grammatical 328
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particular, we probe two syntactic dimensions: 1) the distinc- 332

tion between function and content words; and 2) the part of 333

speech categories of content words (nouns, verbs, adjectives). 334

Experimental studies suggest that infants have access to 335

the function words of their native language around one year 336

of age (36), and that they use this information to infer part of 337

speech categories of content in their second year of life (37, 38). 338

Lavechin et al. PNAS | November 27, 2022 | vol. XXX | no. XX | 5
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Deep Typo (Wisniewski et al.)

• There are about 5000 languages spoken in the world and current
models cover a few dozens of them…

• Question Can we design methods to transfer annotations from
well resourced languages to low resourced languages ?

• Can we take advantage of speech models to:
• Help annotation (phonological)
• Suggest new hypotheses in typology by computing distances
accross languages

Pangloss (Lacito)
The Pangloss collection gathers speech recordings from rare
languages. These documents result from careful data collection
made by linguists that aim to preserve cultural heritage
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Language models and language
structure



What does Chat GPT know about language structure ?

Basic Anaphora
• What is the antecedent of she in the sentence ”Claire has been awarded the CNRS silver
medal and is now a fellow of the ACL”

The antecedent of ”she” in the sentence ”Claire has been awarded the CNRS silver medal

and is now a fellow of the ACL” is ”Claire”.
• What is the antecedent of she in the sentence ”Claire has been awarded the CNRS silver
medal and she is now a fellow of the ACL”

The antecedent of ”she” in the sentence ”Claire has been awarded the CNRS silver medal

and is now a fellow of the ACL” is ”Claire”.
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What does Chat GPT know about language structure ?

Basic Syntax
• What is the object in the sentence ”Claire has been awarded the CNRS silver medal and is
now a fellow of the ACL”

The object in the sentence ”Claire has been awarded the CNRS silver medal and is now a

fellow of the ACL” is ”the CNRS silver medal”.
• What is the object in the sentence ”Claire is now a fellow of the ACL”

The object in the sentence ”Claire is now a fellow of the ACL” is not clear because there is no

direct object in this sentence. Instead, ”a fellow of the ACL” is a predicate nominative that

renames the subject ”Claire” and describes her status or position.
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Language models and cognition

• Large Language models are not only good for providing
representations/text generation, they are also good predictors
of human language behavior and human physiology.

• Example stimuli (written/speech):
If you were to journey to the North of England you would
come to a valley that is surrounded by moors as high as
mountains. It is in this valley…

• Measures
• from behavioral tasks: self paced reading times, eye tracking
• Measures from physiological tasks: EEG, MEG, fMRI…

• But also model predictions!

Observation (Schrimpf et al. 2022)
Large Language Models run on the same stimuli are good
predictors of human behavior/physiolology
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Large language models and cognition (Schrimpf et al 2021)

3 
 

In the ventral stream specifically, our understanding that computations underlying object recognition are analogous to the 67 
structure and function of DCNNs is supported by findings that across hundreds of model variants, DCNNs that perform better 68 
on object recognition tasks also better capture human recognition behavior and neural responses in IT cortex of both human 69 
and non-human primates (Rajalingham et al., 2018; Schrimpf et al., 2018, 2020; Yamins et al., 2014). This integrative 70 
benchmarking reveals a rich pattern of correlations among three classes of performance measures — (i) neural variance 71 
explained, in IT neurophysiology or fMRI responses (brain scores), (ii) accuracy in predicting hits and misses in human object 72 
recognition behavior, or human object similarity judgments (behavioral scores), and (iii) accuracy on the core object 73 
recognition task (computational task score) — such that for any individual DCNN model we can predict how well it would 74 
score on each of these measures from the other measures. This pattern of results was not assembled in a single paper but in 75 
multiple papers across several labs and several years. Taken together, they provide strong evidence that the ventral stream 76 
supports primate object recognition through something like a deep convolutional feature hierarchy, the exact details of which 77 
are being modeled with ever-increasing precision. 78 

Here we describe an analogous pattern of results for ANN models of human language, establishing a link between language 79 
models, including transformer-based ANN architectures that have revolutionized natural language processing in AI systems 80 
over the last three years, and fundamental computations of human language processing as reflected in both neural and 81 
behavioral measures.  Language processing is known to depend causally on a left-lateralized fronto-temporal brain network 82 
(Bates et al., 2003; Binder et al., 1997; Fedorenko & Thompson-Schill, 2014; Friederici, 2012; Gorno-Tempini et al., 2004; 83 
Hagoort, 2019; Price, 2010) (Fig. 1) that responds robustly and selectively to linguistic input (Fedorenko et al., 2011; Monti et 84 
al., 2012), whether auditory or visual (Deniz et al., 2019; Regev et al., 2013). Yet the precise computations underlying language 85 
processing in the brain remain unknown. Computational models of sentence processing have previously been used to explain 86 
both behavioral (Dotlačil, 2018; Futrell, Gibson, & Levy, 2020; Gibson, 1998; Gibson et al., 2013; Hale, 2001; Jurafsky, 1996; 87 

Figure 1: Comparing Artificial Neural Network models of language processing to human language processing. We tested how well different models predict 
measurements of human neural activity (fMRI and ECoG) and behavior (reading times) during language comprehension. The candidate models ranged from 
simple embedding models to more complex recurrent and transformer networks. Stimuli ranged from sentences to passages to stories and were 1) fed into 
the models, and 2) presented to human participants (visually or auditorily). Models’ internal representations were evaluated on three major dimensions: 
their ability to predict human neural representations (brain score, extracted from within the fronto-temporal language network (e.g., Fedorenko et al., 2010; 
the network topography is schematically illustrated in red on the template brain above); their ability to predict human behavior in the form of reading times
(behavioral score); and their ability to perform computational tasks such as next-word prediction (computational task score). Consistent relationships 
between these measures across many different models reveal insights beyond what a single model can tell us. 
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dataset is also reliably predicted, but with lower predictivity. Models vary substantially in their ability to predict neural data. 173 
Generally, embedding models such as GloVe do not perform well on any dataset. In contrast, recurrent networks such as skip-174 
thoughts, as well as transformers such as BERT, predict large portions of the data. The model that predicts the human data 175 
best across datasets is GPT2-xl, a unidirectional-attention transformer model, which predicts Pereira2018 and Fedorenko2016 176 
at close to 100% of the noise ceiling and is among the highest-performing models on Blank2014 with 32% normalized 177 
predictivity. These scores are higher in the language network than other parts of the brain (SI-4). Intermediate layer 178 
representations in the models are most predictive, significantly outperforming representations at the first and output layers 179 
(Figs. 2c, S13). 180 
Model scores are consistent across experiments/datasets. To test the generality of the model representations, we examined the 181 
consistency of model brain scores across datasets. Indeed, if a model achieves a high brain score on one dataset, it tends to 182 
also do well on other datasets (Fig. 2d), ruling out the possibility that we are picking up on spurious, dataset-idiosyncratic 183 
predictivity, and suggesting that the models’ internal representations are general enough to capture brain responses to 184 
diverse linguistic materials presented visually or auditorily, and across three independent sets of participants. Specifically, 185 
model brain scores across the two experiments in Pereira2018 (overlapping sets of participants) correlate at r=.94 (Pearson 186 
here and elsewhere, p<<.00001), scores from Pereira2018 and Fedorenko2016 correlate at r=.50 (p<.001), and from 187 
Pereira2018 and Blank2014 at r=.63 (p<.0001). 188 
 189 
Next-word-prediction task performance selectively predicts brain scores. In the critical test of which computations might 190 
underlie human language understanding, we examined the relationship between the models’ ability to predict an upcoming 191 
word and their brain scores. Words from the Wikitext-2 dataset (Merity et al., 2016) were sequentially fed into the candidate 192 
models. We then fit a linear classifier (over words in the vocabulary; n=50k) from the last layer’s feature representation 193 
(frozen, i.e. no finetuning) on the training set to predict the next word, and evaluated performance on the held-out test set 194 
(Methods_8). Indeed, next-word-prediction task performance robustly predicts brain scores (Fig. 3a; r=.44, p<.01, averaged 195 
across datasets). The best language model, GPT2-xl, also achieves the highest brain score (see previous section). This 196 
relationship holds for model variants within each model class—embedding models, recurrent networks, and transformers—197 
ruling out the possibility that this correlation is due to between-class differences in next-word-prediction performance. 198 

To test whether next-word prediction is special in this respect, we asked whether model performance on any language task 199 
correlates with brain scores. As with next-word prediction, we kept the model weights fixed and only trained a linear readout. 200 
We found that performance on tasks from the GLUE benchmark collection (Cer et al., 2018; Dolan & Brockett, 2005; Levesque 201 
et al., 2012; Rajpurkar et al., 2016; Socher et al., 2013; A. Wang, Singh, et al., 2019; Warstadt et al., 2019; Williams et al., 202 

Figure 2: Specific models accurately predict neural responses consistently across datasets. (a) We compared 43 computational models of language 
processing (ranging from embedding to recurrent and bi- and uni-directional transformer models) in their ability to predict human brain data. The neural
datasets include: fMRI voxel responses to visually presented (sentence-by-sentence) passages (Pereira2018), ECoG electrode responses to visually presented 
(word-by-word) sentences (Fedorenko2016), fMRI region of interest (ROI) responses to auditorily presented ~5min-long stories (Blank2014). For each model, 
we plot the normalized predictivity (‘brain score’), i.e. the fraction of ceiling (gray line; Methods_7, Fig. S1) that the model can predict. Ceiling levels are .32 
(Pereira2018), .17 (Fedorenko2016), and .20 (Blank2014). Model classes are grouped by color (Methods_5, Table S10). Error bars (here and elsewhere) 
represent median absolute deviation over subject scores. (b) Normalized predictivity of GloVe (a low-performing embedding model) and GPT2-xl (a high-
performing transformer model) in the language-responsive voxels in the left hemisphere of two representative participants from Pereira2018 (also Fig. S3).
(c) Brain score per layer in GPT2-xl. Middle-to-late layers generally yield the highest scores for Pereira2018 and Blank2014 whereas earlier layers better 
predict Fedorenko2016. This difference might be due to predicting individual word representations (within a sentence) in Fedorenko2016, as opposed to 
whole-sentence representations in Pereira2018. (d) To test how well model brain scores generalize across datasets, we correlated i) two experiments with
different stimuli (and some participant overlap) in Pereira2018 (obtaining a very strong correlation), an ii) Pereira2018 brain scores with the scores for each 
of Fedorenko2016 and Blank2014 (obtaining lower but still highly significant correlations). Brain scores thus tend to generalize across datasets, although 
differences between datasets exist which warrant the full suite of datasets. 
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Language models and language structure

• Large Language Models (transformers) are not motivated by
linguistic theory (biases are likely to be very different)

• Contrary to linguistic theory, no distinction between language
and common sense, world knowledge (Mahowald et al. 2023)

• Results from neurosciences tend to highlight there is a
language-specific network in the brain (Blank et al. 2016,
Fedorenko et al. 2018)

• Require an unrealistic amount of training data:Humans are data-efficient language learners.

6• But they have impressive empirical adequacy and (apparently)
relevant internal representations

• New/alternative insights for language sciences ?
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Structural properties (ongoing work)

Modern language models have rich internal structure:

• To which extent do they capture anything similar to the
linguistic structure of language ?

• To which extent do they generalize rather than memorize ?
• To which extent can they be modified/biased to reflect linguistic
hypotheses
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Two cases of agreement in French (Li, Wisniewski, Crabbé 2023)

(1) Les chats [ que Marie aime bien ]RC jouent dans le jardin .
The_Pl cats_Pl [ that Marie likes_Sg a_lot ]RC play_Pl in the garden.

suj

(2) Il aime les chats [ que Marie a adoptés ]RC .
He_Sg loves_Sg the_Pl cats_Pl [ that Marie has_Sg adopted_Pl ]RC

ana obj

Why this example ?
• In surface, both cases look similar: a noun precedes a verbal
form and agreement should hold between the two

• The linguistic structure is however quite different: in the first
case it requires to identify an embedded relative clause; in the
second case there is an anaphoric clause and a ”moved” object
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The model used…

• Small scale autoregressive transformer model/LSTM
• Trained on French Wikipedia (≈ 9Gb)
• Tokens are traditional words rather than tokens
(V = 50000 tokens)

• Tested on French Gutenberg extracted examples
(≈ 95000 examples overall)
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Structure encoding

Question : Do language models capture a non superficial structure ?

Test task : We ask to an incremental (autoregressive) model to
predict the verbal form (binary choice, two potential forms)

Les chats que Marie aime bien {joue, jouent}

Test examples are ranked as a function of the number h of heuristics
they satisfy:

• agreement with the first noun in the sentence gives the correct prediction
• agreement with the noun closest to the verb gives the closest prediction
• agreement with the token closest to the verb gives the closest prediction
• agreement with the noun before the closest que
• agreement with the majority number in the sentence gives the closest prediction

The higher the h the easier is the example
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Rating examples difficulty with heuristics

Number of
heuristics

Difficulty
of agreement

Examples

5 --- Si les idées que ces mots représentent ne sont pas ...
(5) If the ideas

(1)
(4) that these words(2) represent(3) are not...

4 -- Les choses que nous avions vues cent fois avec indifférence nous touchent...
(5) The things(1)

(4) that we had seen a hundred times with indifference us(3) touch

3 - Un philosophe est curieux de savoir si les idées qu’ il a semées auront...
A philosopher is curious to know if the ideas(4)

(2) that he has sown(3) have...

2 + Les emblèmes qu’ on y rencontre à chaque pas disent ...
The emblems(1)

(4) that we meet at each step say ...

1 ++ Les qualités qui t’ont fait arriver si jeune au grade que tu as doivent te porter ...
The qualities(1) that made you arrive so young at the rank you have must bring you ...

0 +++ Ce soir les hommes que j’ai postés sur la route que doit suivre le roi prendront ...
Tonight the men that I have posted on the road that the king must follow will_take ...
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Results
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In non trivial cases (h = 0) incremental transformers are still above
chance
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Where is encoded the number

• Protocol : We use a probe to predict the correct agreement
number (antecedent,verb) on all the tokens

• Observation :

Sans doute ces instants de bonheur que tu lui as donnés/donné* resteront ...
No doubt these moments of happiness that you (to) him have given will_stay ...

Mean probing Accuracy
Object-pp Subject-verb

prefix 58.6%±0.1 59.5%±0.2

context 92.3%±0.2 93.0%±0.1

suffix 73.6%±0.2 78.1%±0.2

• The number is essentially encoded within the context
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Differences between the two cases of agreement ?

Protocol:

• An incremental transformer predicts the verbal form verbale
with full access to the previous context

les bureaux qu’ il a vus/vu*

• Here we prevent the model to have access to some key elements
of the context (ex ‘que’):

les bureaux qu’ il a vus/vu*

39



Results

• ‘que’ is important for achieving object past participle agreement,
but much less pour for subject-verb agreement

• For object-past participle agreement, decisions rely on
antecedent and que

• For subject verb agreement, decisions rely on subject and local
context

⇒ predictions rely on different mechanics, one for each agreement
type
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Memorization or Generalization ? (COGS, Kim and Linzen 2020)

• Task: learn on a dataset with some missing structural
generalization patterns

• Predict on a dataset where the model has to generalize for
substitutivity and productivity patterns (Fodor, Phylyshin 1988)

Training Generalization

A hedgehog ate the cake The baby liked the hedgehog
*cake(x4); hedgehog(x1) *baby(x1); hedgehog(x4)
∧eat.agent(x2, x1) ∧ eat.theme(x2, x4) ∧like.agent(x2, x1) ∧ like.theme(x2, x4)

Ava saw a ball in a bowl on the table Ava saw a ball in a bowl on the table on the floor
∗table(x9); ball(x3) ∧ bowl(x6) ∗table(x9); ∗floor(x12); ball(x3) ∧ bowl(x6)
see.agent(x1, ava) ∧ see.theme(x1, x3) see.agent(x1, ava) ∧ see.theme(x1, x3)
ball.nmod.in(x3, x6) ∧ ball.nmod.on(x6, x9) ball.nmod.in(x3, x6) ∧ ball.nmod.on(x6, x9)

table.nmod.on(x9, x12)

Observation
For standard seq2seq, total failure on productivity patterns. More
or less accurate on substitutivity patterns 41



Example (seq2seq)

Models that generalize on productivity patterns are neural parsers.
42



Conclusion and perspectives

• New insights from existing models ? (Baroni 2020)
• Models with built-in structural, linguistic or cognitive biases:

• (Vasishth and Engelmann 2022) Sentence Comprehension as a
Cognitive Process

• Graph Neural networks (Scarselli 2009)
• Time dependant (recurrent) models (Futrell et al 2020)

• New perspectives in linguistic typology
• … can we expect an AlphaFold for language sciences ? the
question remains open
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Last but not least

thank you !

44


	How did we get there ?
	Language models, Sesame street and GPT
	Fine tuning language models
	Language models and language structure

